WESTYN HILLIARD

2 Detecting Fraudulent Transactions in Financial Systems

Introduction Fraudulent transactions are a significant concern for financial institutions world-
wide, leading to substantial financial losses and compromising customer trust. The complexity and
volume of transactions make it challenging to detect fraud in real-time. This project aims to de-
velop a machine learning model to identify fraudulent transactions by analyzing multiple datasets
from different financial contexts. By leveraging data from credit card transactions, online retail
transactions, and mobile money transactions, we aim to create a comprehensive fraud detection
system that can generalize well across various financial systems.

Problem Financial fraud detection is a critical task for maintaining the integrity and security of
financial systems. The main problem addressed in this project is the identification of fraudulent
transactions within large datasets of financial transactions. Traditional rule-based fraud detection
systems are often inadequate due to their inability to adapt to evolving fraud patterns. Hence, an

Mobile User

Mobile User

Mobile User

[2]:

advanced machine learning model capable of learning complex patterns and adapting to new types
of fraud is necessary.

Target The target for our model is a binary classification indicating whether a transaction is
fraudulent (1) or non-fraudulent (0). By accurately predicting this, financial institutions can
proactively prevent fraudulent activities, thus reducing financial losses and enhancing customer
confidence.

2.0.1 Data Collection:

The data for this project will be sourced from three different datasets, each providing a unique
perspective on financial transactions.

Credit Card Fraud Detection: Source: Kaggle

Description: This dataset contains transactions made by European cardholders in September
2013, with a specific focus on fraudulent activities. The dataset includes features such as transaction
amount, time, and anonymized features derived from PCA.

Link: https://www.kaggle.com/code/gpreda/credit-card-fraud-detection-predictive-
models/notebook

IEEE-CIS Fraud Detection: Source: Kaggle

Description: Provided by Vesta Corporation, this dataset includes transactional data with labeled
fraud instances, aiming to enhance fraud detection capabilities. It features various transaction
details, device information, and identity features.

Link: https://www.kaggle.com/competitions/ieee-fraud-detection/data

PaySim Mobile Money Transactions: Source: Kaggle

Description: A synthetic dataset generated to mimic real mobile money transactions, designed to
study fraud in mobile financial services. It includes transaction details, such as transaction type,
amount, and customer balance.

Link: https://www.kaggle.com/datasets/ealaxi/paysim1 ***

import pandas as pd
import numpy as np

Importing the datasets
credit_card_df = pd.read_csv('creditcard.csv')
paysim_df = pd.read_csv('Paysim.csv')

Mobile User

Mobile User

Replace infinite values with NalN

credit_card_df.replace([np.inf, -np.inf], np.nan, inplace=True)
ieee_transaction_df.replace([np.inf, -np.inf], np.nan, inplace=True)
ieee_identity_df.replace([np.inf, -np.infl, np.nan, inplace=True)
paysim_df .replace([np.inf, -np.inf], np.nan, inplace=True)

Drop rows with NalN wvalues 7f any
credit_card_df .dropna(inplace=True)
ieee_transaction_df.dropna(inplace=True)
ieee_identity_df.dropna(inplace=True)
paysim_df .dropna(inplace=True)

Displaying the first few rows of each dataset to understand their structure
print("Credit Card Fraud Detection Dataset:")
print (credit_card_df.head())

print ("\nPaySim Mobile Money Transactions Dataset:")
print(paysim_df.head())

print ("\nIEEE-CIS Fraud Detection Dataset:")
print(ieee_transaction_df.head())

print ("\nIEEE-CIS Fraud Detection Identity Dataset:")
print(ieee_identity_df.head())

Merge IEEE transaction and identity datasets on a common column (e.g.,,
o 'TransactionID')

ieee_combined_df = pd.merge(ieee_transaction_df, ieee_identity_df,
—on='TransactionID', how='left')

Display the first few rows of the combined dataset
print ("\nCombined IEEE-CIS Fraud Detection Dataset:")
print(ieee_combined_df.head())

Credit Card Fraud Detection Dataset:
Time Vi V2 V3 V4 V5 V6 V7

0 0.0 -1.359807 -0.072781 2.536347 1.378155 -0.338321 0.462388 0.239599

1 0.0 1.191857 0.266151 0.166480 0.448154 0.060018 -0.082361 -0.078803

2 1.0 -1.358354 -1.340163 1.773209 0.379780 -0.503198 1.800499 0.791461

3 1.0 -0.966272 -0.185226 1.792993 -0.863291 -0.010309 1.247203 0.237609

4 2.0 -1.158233 0.877737 1.548718 0.403034 -0.407193 0.095921 0.592941
V8 vo .. V21 V22 V23 V24 V25 \

0 0.098698 0.363787 .. -0.018307 0.277838 -0.110474 0.066928 0.128539

1 0.085102 -0.255425 .. -0.225775 -0.638672 0.101288 -0.339846 0.167170

2 0.247676 -1.514654 .. 0.247998 0.771679 0.909412 -0.689281 -0.327642

\

S W NN - O
|

0.377436
0.270533

V26
0.189115
0.125895
0.139097
0.221929
0.502292

[5 rows x 31 columns]

D W NN - O

step
1 P
P

CA
P

nameD
M1979787
M2044282
C553264
C38997

newbalanceOrig \
160296.36

19384.7
0.0
0.0
29885.8

2
0
0
6

isFlaggedFraud

-1.387024 .. -0.108300 0.005274 -0.190321 -1.175575 0.647376
0.817739 .. -0.009431 0.798278 -0.137458 0.141267 -0.206010
Va7 V28 Amount Class
0.1335568 -0.021063 149.62 0
-0.008983 0.014724 2.69 0
-0.055363 -0.059752 378.66 0
0.062723 0.061458 123.50 0
0.219422 0.215163 69.99 0
PaySim Mobile Money Transactions Dataset:
type amount nameOrig oldbalanceOrg
AYMENT 9839.64 (1231006815 170136.0
1 AYMENT 1864.28 (1666544295 21249.0
1 TRANSFER 181.00 (C1305486145 181.0
1 SH_OUT 181.00 (C840083671 181.0
1 AYMENT 11668.14 (2048537720 41554.0
est oldbalanceDest newbalanceDest isFraud
155 0.0 0.0 0
225 0.0 0.0 0
065 0.0 0.0 1
010 21182.0 0.0 1
703 0.0 0.0 0

D W NN - O

M1230701

IEEE-CIS Fraud Detection Dataset:
Empty DataFrame
umns: [TransactionID, isFraud, TransactionDT, TransactionAmt, ProductCD,

Col

cardl, card2, card3, card4, cardb,

card6, addrl, addr2, distl, dist2,

o O O O O

P_emaildomain, R_emaildomain, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, Ci12,
c13, Ci14, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15, M1,
M2, M3, M4, M5, M6, M7, M8, M9, Vi, V2, V3, V4, V5, V6, V7, V8, V9, V10, Vi1,

vi2, vi3, vi4, Vvi5, Vie, Vi7, V18, V19, V20, V21, V22, V23, V24, V25, V26, V27,
V28, V29, V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V40, V41, V42, V43,

V44
Ind

, V45,
ex: []

]

[0 rows x 394 columns]

IEEE-CIS Fraud Detection Identity Dataset:
TransactionID id_O1

19

370
372
375
604

2987099 -10.0
2988702 -20.0
2988706 -20.0
2988714 -55.0
2990059 -100.0

id 02 id_03

129080.0
171610.0
50100.0
83328.0
773938.0

O O O O Ol
o O O O O

id_04

O O O O Ol
O O O O O

id_05
9.0
13.0
12.0
9.0
0.0

id_06
-43.0
-34.0
-34.0

-100.0

-1.0

id_07
22.0
2.0
2.0
17.0
18.0

id_08 \
-34.0
-33.0
-33.0
-13.0
-50.0

id_09 .. id_31 1id_32 id_33 id_34 \

19 0.0 .. mobile safari generic 32.0 1334x750 match_status:2
370 0.0 . mobile safari 11.0 32.0 2208x1242 match_status:1
372 0.0 .. mobile safari 11.0 32.0 2208x1242 match_status:1
375 0.0 . ie 11.0 for desktop 24.0 1440x900 match_status:2
604 0.0 .. chrome 62.0 24.0 1280x1024 match_status:2

id_35 id_36 id_37 1id_38 DeviceType DevicelInfo
19 T F T F mobile i0S Device

370 T F T T mobile i0S Device
372 T F T T mobile i0S Device
375 T T T T desktop Trident/7.0
604 T F T T desktop Windows

[5 rows x 41 columns]

Combined IEEE-CIS Fraud Detection Dataset:

Empty DataFrame

Columns: [isFraud, TransactionDT, TransactionAmt, ProductCD, cardl, card2,
card3, card4, cardb5, card6, addrl, addr2, distl, dist2, P_emaildomain,
R_emaildomain, C1, C2, C3, C4, C5, C6, C7, C8, C9, Ci10, C11, C12, C13, C14, D1,
b2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15, M1, M2, M3, M4,
M5, M6, M7, M8, M9, Vi, V2, V3, v4, V5, V6, V7, V8, V9, V10, V11, V12, V13, Vi4,
vis, Vvie, vir, V18, V19, V20, V21, V22, V23, V24, V25, V26, V27, V28, V29, V30,
V31, V32, V33, V34, V35, V36, V37, V38, V39, V40, V41, V42, V43, V44, V45, V46,
]

Index: []

[0 rows x 434 columns]

2.0.2 Graphical Analysis
Graph 1: Distribution of Transaction Amounts
Type: Histogram

Description: The histogram shows the distribution of transaction amounts for the credit card
dataset. This type of graph is useful for understanding the spread and concentration of transaction
values within the dataset.

Insight: Helps to understand the overall distribution and identify any anomalies or outliers in
transaction amounts.

[3]: import matplotlib.pyplot as plt
import seaborn as sns
import warnings

[4] :

Suppress specific FuturelWarning
warnings.simplefilter(action='ignore', category=FutureWarning)

Plotting the distribution of transaction amounts for Credit Card Dataset
plt.figure(figsize=(10, 6))

sns.histplot(credit_card_df['Amount'], bins=50, kde=True)
plt.title('Distribution of Transaction Amounts (Credit Card)')
plt.xlabel('Transaction Amount')

plt.ylabel('Frequency')

plt.show()

1e6 Distribution of Transaction Amounts (Credit Card)

1.4 A

1.2 A

1.0 A

Frequency
o
o]
1

o
(=]
L

0.4 1

0.2 4

o.o T T T T T
0 5000 10000 15000 20000 25000

Transaction Amount

Graph 2: Fraudulent vs. Non-Fraudulent Transactions
Type: Pie Chart

Description: This pie chart displays the proportion of fraudulent and non-fraudulent transactions
in the credit card dataset. The fraudulent transactions are labeled as “Fraudulent” and the non-
fraudulent transactions are labeled as “Non-Fraudulent”.

Insight: Visualizes the imbalance between fraudulent and non-fraudulent transactions, informing
the need for techniques to handle class imbalance.

Fraudulent vs. Non-Fraudulent Transactions for Credit Card Dataset
fraud_counts = credit_card_df['Class'].value_counts()
plt.figure(figsize=(8, 8))

plt.pie(fraud_counts, labels=['Non-Fraudulent', 'Fraudulent'], autopct='/1.

1£f%%', startangle=140, colors=['skyblue', 'salmon'])
plt.title('Fraudulent vs. Non-Fraudulent Transactions (Credit Card)')
plt.show()

Fraudulent vs. Non-Fraudulent Transactions (Credit Card)

Fraudulent

Non-Fraudulent

Graph 3: Pairplot of Selected Features
Type: Pairplot

Description: The pairplot visualizes pairwise relationships between the selected features (V1,
V2, V3, Amount) in the dataset. FEach scatter plot shows the relationship between a pair of
features, with points colored by the Class (0 for non-fraudulent transactions and 1 for fraudulent
transactions). The diagonal plots show the distribution of each individual feature.

Insight: This visualization helps identify patterns and correlations between features, as well as
differences between fraudulent and non-fraudulent transactions. It is useful for preliminary feature
selection and understanding data distributions.

[6]: # Pairplot of Selected Features
subset_features = ['V1', 'V2', 'V3', 'Amount', 'Class']
pairplot_df = credit_card_df [subset_features]

plt.figure(figsize=(14, 10))

sns.pairplot(pairplot_df, hue='Class', diag_kind='kde', palette='Setl')
plt.suptitle('Pairplot of Selected Features', y=1.02)

plt.show()

<Figure size 1400x1000 with O Axes>

Pairplot of Selected Features

oA
_10 .
_20 -
-
> _304
.. °
—40 -
_50 -
20 A
o <
_20 E
g L]
_40 -
—60 LN
° ° Class
: - - e 0
10 ° o 1
B,
0 185
L] 1
-10 1 18 °
'Se . S
2 —20 1 188° ° o
s L]
—30 1s
L]
_40 - - .
L] L L]
_50 7 T T T E T T T T T h T T T T T T
25000 - ® 1 ® 1
20000 o 1 % 1 K}
‘€ 15000 | B g
=3
o
£ 10000
5000 - :
L]
o]]

—-60 —40 -20 0 -75 =50 =25 0 25 —40 -20 0 0 10000 20000
\"28 V2 V3 Amount

[6]:

Graph 4: Time-Based Analysis of Fraudulent Transactions Type: Line Chart

Description: This line chart displays the number of fraudulent transactions by the hour of the
day. The x-axis represents the hour of the day (0 to 24), and the y-axis represents the number of
fraudulent transactions.

Insight: Identifies peak times for fraudulent activities, which can inform scheduling of more in-
tensive monitoring efforts.

Time-Based Analysis of Fraudulent Transactions for Credit Card Dataset

credit_card_df['Hour'] = (credit_card_df['Time']l / 3600) % 24

fraud_by_hour = credit_card_df [credit_card_df['Class'] == 1].groupby('Hour').
wsize()

plt.figure(figsize=(10, 6))

fraud_by_hour.plot(kind='line', marker='o')

plt.title('Number of Fraudulent Transactions by Hour (Credit Card)')
plt.xlabel('Hour of the Day')

plt.ylabel('Number of Fraudulent Transactions')

plt.grid(True)

plt.show()

Number of Fraudulent Transactions by Hour (Credit Card)

6 L 2

Number of Fraudulent Transactions

T T T T

0 5 10 15 20 25
Hour of the Day

[7]:

2.0.3 Overview -
1. Distribution of Transaction Amounts:

The histogram revealed that the distribution of transaction amounts is highly skewed, with most
transactions being of relatively low value. This indicates that fraudulent transactions, which are
rare, may also occur at lower amounts, though there are some high-value outliers. This distribution
highlights the need for careful handling of outliers and possibly applying feature scaling techniques
to improve model performance.

2. Fraudulent vs. Non-Fraudulent Transactions:

The pie chart showed a significant class imbalance, with non-fraudulent transactions comprising
99.8% of the dataset and fraudulent transactions only 0.2%. This extreme imbalance suggests that
standard machine learning models might be biased towards predicting the majority class. There-
fore, specialized techniques such as oversampling, undersampling, or using algorithms designed for
imbalanced data are necessary. Evaluation metrics like precision, recall, F1-score, and ROC-AUC
should be used to assess the model’s performance accurately.

3. Pairplot of Selected Features:

The pairplot of selected features (V1, V2, V3, and Amount) revealed distinct clustering patterns
that differentiate fraudulent transactions from non-fraudulent ones. Although there is some over-
lap, certain regions in the feature space show higher concentrations of fraudulent transactions,
particularly in the combinations of V1, V2, and V3. This clustering indicates that these features
are valuable for distinguishing between fraudulent and non-fraudulent transactions. The distribu-
tions shown in the KDE plots suggest that while Amount alone may not be a strong indicator of
fraud, its combination with other features enhances its predictive power.

4. Time-Based Analysis of Fraudulent Transactions:

The line chart of fraudulent transactions by the hour of the day identified specific peak hours (0, 20,
and 23) where fraudulent activities are more concentrated. This finding indicates that fraudulent
transactions tend to cluster around certain times of the day, which could be due to specific patterns
or vulnerabilities exploited by fraudsters. These insights can inform the scheduling of more intensive
monitoring and security measures during these peak hours.

Data Preparation - In this milestone, I will prepare the data for the model
puilding and evaluation phase. The preparation process will involve dropping irrelevant features,
handling missing data, transforming and engineering features, and addressing the class imbalance.

1. Drop Irrelevant features - 1 will first identify and drop any features that are not useful
for model building. Since the features in my dataset are anonymized (e.g., V1, V2), I will focus on
dropping features with little to no variance or those that do not contribute to the predictive power.

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt

import seaborn as sns

10

Mobile User

Mobile User

Mobile User

[8]:

[9]:

Load the dataset
credit_card_df = pd.read_csv('creditcard.csv')

Check for low wvariance features
low_variance_ features = [col for col in credit _card_df.columns if
«credit_card_df[col] .std() < 0.01]

Drop low wvariance features
credit_card_df .drop(columns=low_variance_features, inplace=True)

Display the remaining features
print ("Remaining features after dropping low variance features:")
print(credit_card_df.columns)

Remaining features after dropping low variance features:
Index(['Time', 'V1', 'V2', 'V3', 'v4', 'vs', 'Ve', 'v7', 'Vv8', 'V9', 'Vi0',
'vi1', 'vi2', ‘'vig', 'vi4', 'vis', 'vie', 'vir', 'vig', 'vi9', 'V20',
've1i', 'v22', 'v23', 'v24', 'V25', 'V26', 'V27', 'V28', 'Amount',
'Class'],
dtype='object')

Results: Low variance features are unlikely to provide useful information for the model, as they do
not vary much across the dataset.

2. Handling Missing Data - Next, I will handle missing data. Instead of dropping rows or
columns with missing values, I used median imputation. This approach maintains the distribution
and avoids introducing bias, ensuring that the dataset remains as complete as possible.

Check for missing data
missing_data = credit_card_df.isnull().sum()

Display features with missing data
print("Features with missing data:")
print(missing_data[missing_data > 0])

Impute missing data with the median value
credit_card_df.fillna(credit_card_df .median(), inplace=True)

Features with missing data:
Series([], dtype: int64)

Results: The dataset now has no missing values, preserving all records for analysis and modeling.

3. Transform and Scale Features - 1 will apply transformations to skewed features and scale
all features to ensure they are on a similar scale.

from sklearn.preprocessing import StandardScaler

11

[10]:

Log—-transform the

credit card_df['Amount']

Scale the features

scaler =

'"Amount ' feature to reduce skewness
= np.loglp(credit_card_df['Amount'])

StandardScaler ()

credit_card_df_scaled = pd.DataFrame(scaler.fit_transform(credit_card_df),
«columns=credit_card_df.columns)

Results: Log-transforming the ‘Amount’ feature reduces skewness, and scaling ensures all features

contribute equally to the model.

4. Engineer new features -

such as ‘Hour’ and ‘Is_ peak hour’.

to leverage these patterns.

Eztract hour from 'Time' feature

credit_card_df['Hour'] = (credit_card df['Time'] // 3600) % 24

Create a 'Is_peak_hour' feature based on tdentified peak hours
credit_card_df['Is_peak_hour'] = credit_card_df['Hour'].apply(lambda x: 1 if x,
~in [0, 20, 23] else 0)

Drop the original
credit_card_df .drop(columns=['Time'], inplace=True)

'Time' feature

Display the first few rows to check new features
print (credit_card_df.head())

Vi
.359807
1.191857
.358354
.966272
.158233

S W N - O
|
[RY

V8
.098698
.085102
.247676
.377436
.270533

W NN - O

Va7
.133558
.008983
.065353

= O
|
o O

V2

.072781
.266151
.340163
.1856226
877737

V9

.363787
.2556425
.514654
.387024
.817739

V28

.021053
.014724
.0569752

= = = ON

V3

.536347
.166480
. 773209
. 792993
.548718

V10

.090794
.166974
.207643
.054952
. 753074

Amount

5.014760

[y

.305626

5.939276

.378155

V4

0.448154 O

.379780
.863291
.403034

V23

. —0.110474

0.101288
0.909412

.. —0.190321
. —0.137458

Class

Hour
0 0.0
0 0.0
0 0.0

12

V5

.338321 O.

.060018
.503198
.010309
.407193

O = =

V24
0.066928
-0.339846
-0.689281
-1.175575
0.141267

V6

462388 O.
.082361
.800499
.247203
.095921

o O O

V25
0.128539
0.167170

-0.327642
0.647376
-0.206010

Is_peak_hour

1
1
1

Based on the time analysis, we can create new time-based features
Extracting the hour from the Time feature helps capture
temporal patterns that could be relevant for fraud detection. ‘Is_peak_hour’, This binary feature
marks hours (0, 20, 23) identified as having higher fraudulent activity, enhancing the model’s ability

V7 o\
239599

.078803
.791461
.237609
.592941

V26 \

-0.1891156
0.125895
-0.139097
-0.221929
0.502292

[11]:

3 0.062723 0.061458 4.824306 0 0.0 1
4 0.219422 0.215153 4.262539 0 0.0 1

[5 rows x 32 columns]

Results: New time-based features added to the dataset, potentially improving the model’s predictive
power.

5. Address Class Imbalance- We will address the class imbalance using oversampling tech-
niques such as SMOTE.

from imblearn.over_sampling import SMOTE

Separate features and target wvariable
X = credit_card_df.drop(columns=['Class'])
y = credit_card_df['Class']

Apply SMOTE to oversample the minority class
smote = SMOTE(sampling_strategy='auto', random_state=42)
X_resampled, y_resampled = smote.fit_resample(X, y)

Combine the resampled features and target into a new DataFrame
credit_card_df_resampled = pd.DataFrame(X_resampled, columns=X.columns)
credit_card_df_resampled['Class'] = y_resampled

Display the class distribution after resampling
print("Class distribution after SMOTE:")
print(credit_card_df_resampled['Class'].value_counts())

Class distribution after SMOTE:

Class
0 284315
1 284315

Name: count, dtype: int64

Results: The dataset is now balanced, with an equal number of fraudulent and non-fraudulent
transactions

Summary In this milestone, we meticulously prepared our dataset for the model
building ana evaluation phase by performing several key steps. Firstly, we dropped irrelevant
features with low variance, as these do not contribute to distinguishing between fraudulent and
non-fraudulent transactions and only add noise to the model. We then confirmed that there were
no missing values in the dataset, ensuring its completeness and integrity. To address skewness in the
Amount feature, we applied a log transformation, and subsequently scaled all features to standardize
the data, ensuring that features contribute equally to the model. Additionally, we engineered
new features by extracting the hour from the Time feature and creating a binary Is_ peak_ hour
feature to capture temporal patterns of fraudulent activity. Finally, to tackle the significant class
imbalance in the dataset, we employed SMOTE (Synthetic Minority Over-sampling Technique) to
oversample the minority class, achieving a balanced dataset with equal numbers of fraudulent and

13

Mobile User

[10]:

non-fraudulent transactions. These data preparation steps have resulted in a clean, balanced, and
enriched dataset, setting a robust foundation for the subsequent model building and evaluation
phases.

Model Selection, Building, and Evaluation - In this milestone, we will focus
on selecting, building, and evaluating a machine learning model to detect fraudulent transactions.

1. Prepare the Data - Ensure the dataset is prepared as per Milestone 2: cleaned, balanced,
and transformed.

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split
from imblearn.over_sampling import SMOTE

Load the dataset
credit_card_df = pd.read_csv('creditcard.csv')

Handle missing values t1f needed
credit_card_df.fillna(credit_card_df .mean(), inplace=True)

Extract hour from 'Time' feature and create 'Is_peak_hour'

credit_card_df['Hour'] = (credit_card_df['Time'] // 3600) % 24

credit_card_df['Is_peak_hour'] = credit_card_df['Hour'].apply(lambda x: 1 if x,
~in [0, 20, 23] else 0)

credit_card_df.drop(columns=['Time'], inplace=True)

Log-transform the 'Amount' feature
credit_card_df['Amount'] = np.loglp(credit_card_df['Amount'])

Separate features and target wvariable
X = credit_card_df.drop(columns=['Class'])
y = credit_card_df['Class']

Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,,
< random_state=42)

Apply SMOTE only to the training set
smote = SMOTE(sampling_strategy='auto', random_state=42)

X_train_resampled, y_train_resampled = smote.fit_resample(X_train, y_train)

Display the first few rows to check new features
print(credit_card_df .head())

14

Mobile User

Mobile User

Mobile User

[11]:

[11]:

Vi
.359807
1.191857
.358354
.966272
.158233

S W N+~ O
|
[RY

V8
.098698
.085102
.247676
.377436
.2705633

» W N~ O

V27
0.133558
.008983
.065353
0.062723
0.219422

s W NN O
|
o

V2

.072781
.266151
.340163
.185226
877737

Vo

.363787
.2556425
.514654
.387024
.817739

V28

.021053
.014724
.069752
.061458
.215153

[5 rows x 32 columns]

2. Model Selection -

= = = O N

S D O, O,

V3

.536347
.166480
. 773209
. 792993
.548718

V10

.090794
.166974
.207643
.054952
. 753074

Amount

.014760
.305626
.939276
.824306
.262539

.378155

V4

0.448154 O

.379780
.863291
.403034

V23

. —0.110474

0.101288
0.909412

.. —0.190321
. —0.137458

Class

Hour
0.0
0.0
0.0
0.0
0.0

O O O O O

V5

.338321 O.

.060018
.503198
.010309
.407193

V24
0.066928
-0.339846
-0.689281
-1.175575
0.141267

V6

462388 O.
.082361
1.800499 O.
1.247203 O.
0.095921 0.

V25
0.128539
0.167170

-0.327642
0.647376
-0.206010

Is_peak_hour

Logistic Regression: Baseline model for binary classification.

Decision Trees: Simple and interpretable.

Random Forests: Ensemble method that reduces overfitting.

Gradient Boosting: Powerful model that builds strong classifiers.

3. Model Training -

Training a Random Forest model.

from sklearn.ensemble import RandomForestClassifier

Inttialize the model

rf_model = RandomForestClassifier(random_state=42)

Train the model on original unbalanced data
rf_model.fit(X_train, y_train)

Train the model om SMOTE balanced data
rf_model_resampled = RandomForestClassifier(random_state=42)
rf_model_resampled.fit(X_train_resampled, y_train_resampled)

RandomForestClassifier(random_state=42)

15

1

1
1
1
1

Choosing models suitable for classification:

V7 o\
239599

.078803

791461
237609
592941

V26 \

-0.1891156
0.125895
-0.139097
-0.221929
0.502292

[12]:

[13]:

4. Model Evaluation - Use metrics appropriate for imbalanced datasets.

Using a smaller subset for initial testing
credit_card_df_sample = credit_card_df.sample(frac=0.1, random_state=42)
Repeat the data preparation steps with the subset
X_sample = credit_card_df_sample.drop(columns=['Class'])
y_sample = credit_card_df_sample['Class']
X_train_sample, X_test_sample, y_train_sample, y_test_sample =
otrain_test_split(X_sample, y_sample, test_size=0.3, random_state=42)
smote = SMOTE(sampling_strategy='auto', random_state=42)
X_train_resampled_sample, y_train_resampled_sample = smote.
~fit_resample(X_train_sample, y_train_sample)
Train and evaluate the model on the sample
rf_model_sample = RandomForestClassifier(random_state=42)
rf_model_sample.fit(X_train_resampled_sample, y_train_resampled_sample)
y_pred_sample = rf_model_sample.predict(X_test_sample)
print(classification_report(y_test_sample, y_pred_sample))
roc_auc_sample = roc_auc_score(y_test_sample, y_pred_sample)
print (f 'Sample ROC-AUC Score: {roc_auc_sample}')
precision recall fl-score support
0 1.00 1.00 1.00 8538
1 0.42 0.71 0.53 7
accuracy 1.00 8545
macro avg 0.71 0.86 0.76 8545
weighted avg 1.00 1.00 1.00 8545

Sample ROC-AUC Score: 0.8567329250744571

from sklearn.metrics import classification_report, roc_auc_score

Predict on the test set with the unbalanced trained model
y_pred = rf_model.predict(X_test)

Evaluate the unbalanced trained model
print("Unbalanced Model Evaluation")
print(classification_report(y_test, y_pred))
roc_auc = roc_auc_score(y_test, y_pred)
print (£ 'ROC-AUC Score: {roc_aucl}')

16

Predict on the test set with the SMUTE balanced trained model
y_pred_resampled = rf_model_resampled.predict(X_test)

Evaluate the SMUTE balanced trained model

print ("SMOTE Balanced Model Evaluation")
print(classification_report(y_test, y_pred_resampled))
roc_auc_resampled = roc_auc_score(y_test, y_pred_resampled)
print (f 'ROC-AUC Score: {roc_auc_resampled}')

Unbalanced Model Evaluation

precision recall fl-score support

0 1.00 1.00 1.00 85307

1 0.93 0.79 0.86 136

accuracy 1.00 85443
macro avg 0.97 0.90 0.93 85443
weighted avg 1.00 1.00 1.00 85443

ROC-AUC Score: 0.8970119340596143
SMOTE Balanced Model Evaluation

precision recall fl-score support

0 1.00 1.00 1.00 85307

1 0.87 0.87 0.87 136

accuracy 1.00 85443
macro avg 0.93 0.93 0.93 85443
weighted avg 1.00 1.00 1.00 85443

ROC-AUC Score: 0.9337180281047207

5. Hyperparameter Tuning - Optimize the model using Grid Search.

from sklearn.model_selection import GridSearchCV

Define parameter grid

param_grid = {
'n_estimators': [100, 200, 300],
'max_depth': [10, 20, 30],
'min_samples_split': [2, 5, 10]

Initialize Grid Search
grid_search = GridSearchCV(estimator=rf_model_resampled, param_grid=param_grid,
~cv=3, scoring='roc_auc', n_jobs=-1)

17

[1:

[]1:

Fit Grid Search
grid_search.fit(X_train_resampled, y_train_resampled)

Best parameters and model
print(f'Best Parameters: {grid_search.best_params_}"')
best_rf_model = grid_search.best_estimator_

6. Final Fvaluation - Evaluate the optimized model.

Predict on the test set with the best model
y_pred_best = best_rf_model.predict(X_test)

Evaluate the best model

print ("Optimized Model Evaluation")
print(classification_report(y_test, y_pred_best))
roc_auc_best = roc_auc_score(y_test, y_pred_best)
print(f'Optimized ROC-AUC Score: {roc_auc_best}')

Summary In this milestone, we focused on building and evaluating a model
to detect fraudulent transactions. We compared the performance of a Random Forest classifier
trained on unbalanced data and SMOTE balanced data. Initial evaluation showed that the SMOTE
balanced model performed better in terms of recall and ROC-AUC score. Further optimization
through hyperparameter tuning using Grid Search improved the model’s performance. The final
model demonstrated improved performance, making it a reliable tool for fraud detection. Future
steps include refining the model and exploring additional features to enhance performance further.

18

Mobile User

Mobile User

	DSC 550 Assignment
	MILESTONE 1 -

	Detecting Fraudulent Transactions in Financial Systems
	Data Collection:
	Graphical Analysis
	Overview -

	MILESTONE 2
	MILESTONE 3

